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Perils of Squaring Equations 

Did your teacher ever tell you about the perils of squaring equations?   

Squaring an equation typically (almost always) introduces spurious solutions.  This means 
that besides the correct solution, an incorrect solution will also be produced.   

1.  General  concept  

a) A spurious negative result  

What values of x are consistent with  x = 3 ? 

Clearly here we already know that the (unique) answer is  x = 3 .  But suppose we decided to 
square both sides of the equation.   

(x)2 = (3)2 

This is mathematically consistent with the original statement, but it is not as strict (as we 
shall soon see).  Simplifying:   

x2 = 9 

And then the key step is to recognise that this new equation obtained by squaring both sides 
of the original equation allows both −3 and +3 as solutions, which is evident when we 
(carefully!) apply the square root operation on both sides of this new equation.   

x2 = ± 9 

x = ±3 

But only one of these apparent solutions satisfies the original statement (which has priority);  
the other apparent solution is incorrect, so we can call it a ‘spurious solution’.   

To mathematically explain what went wrong, we need to reassert a constraint that was 
implicitly contained in the original equation (but not implicit in the squared equation):   

x = 3 

(x)2 = (3)2 ,   subject to the condition that  x ≥ 0 

x2 = 9 ,   subject to the condition that  x ≥ 0 

x2 = ± 9 ,   subject to the condition that  x ≥ 0 

x = ±3 ,   subject to the condition that  x ≥ 0 

x = 3 

b) A spurious positive result  

It is just as possible to obtain a spurious positive-valued result.   

What values of x are consistent with  x = −3 ? 

x = −3 

(x)2 = (−3)2 ,   subject to the condition that  x ≤ 0 

x2 = 9 ,   subject to the condition that  x ≤ 0 

x2 = ± 9 ,   subject to the condition that  x ≤ 0 

x = ±3 ,   subject to the condition that  x ≤ 0 

x = −3 

If we had ignored the implicit constraint, then we would have accepted the spurious result  
x = +3 .   
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2.  Solving a very s imple algebraic  equation  

Solve  x + 2 = 3 . 

It should be clear that there is one unique solution to the above equation:   

x + 2 − 2 = 3 − 2 

x = +1 

But, as foreshadowed in the previous section, squaring the equation will produce additional 
spurious results — if the implicit constraint is ignored.   

a) Squaring the equation as given 

Let us square the equation 

(x + 2)2 = 32 ,   subject to the condition that  x + 2 ≥ 0 

Notice that this is still consistent with the correct solution presented above.   

Expanding the left hand side (“LHS”):   

x2 + 4x + 4 = 9 ,   subject to the condition that  x + 2 ≥ 0 

Rearranging and factorising:   

x2 + 4x − 5 = 0 ,   subject to the condition that  x + 2 ≥ 0 

(x + 5)(x − 1) = 0 ,   subject to the condition that  x + 2 ≥ 0 

x = −5, x = +1 ,   subject to the condition that  x ≥ −2 

While  x = −5  is a valid solution of the squared equation when the implied constraint is 
ignored, it clearly does not solve the original equation — hence it represents a spurious 
solution.   

b) Manipulating the equation and then squaring  

What happens if we add or subtract integers on both sides of the original equation before 
squaring?  Let’s look at a few permutations.   

 

Add to  
each side 

New 
equation, Ⓐ 

Implied 
constraint 

Squared 
form of Ⓐ 

Factorised Solutions  

+4 x+6=7 x+6>0 (x+6)2=49 (x+13)(x−1)=0 x=−13, x=+1  

+3 x+5=6 x+5>0 (x+5)2=36 (x+11)(x−1)=0 x=−11, x=+1  

+2 x+4=5 x+4>0 (x+4)2=25 (x+9)(x−1)=0 x=−9, x=+1  

+1 x+3=4 x+3>0 (x+3)2=16 (x+7)(x−1)=0 x=−7, x=+1  

0 x+2=3 x+2>0 (x+2)2=9 (x+5)(x−1)=0 x=−5, x=+1  

−1 x+1=2 x+1>0 (x+1)2=4 (x+3)(x−1)=0 x=−3, x=+1  

−2 x=1 x>0 x2=1 (x+1)(x−1)=0 x=−1, x=+1  

−3 x−1=0 x−1=0 (x−1)2=0 (x−1)(x−1)=0 x=+1 ● 

−4 x−2=−1 x−2<0 (x−2)2=1 (x−3)(x−1)=0 x=+1, x=+3  

−5 x−3=−2 x−3<0 (x−3)2=4 (x−5)(x−1)=0 x=+1, x=+5  

 

Notice that each equation in the second column still correctly yields only the unique solution,  
x = +1 .  Yet for every case bar one (marked with a circle), a spurious solution is generated 
from the squared form of the new equation — if the implied constraint is ignored.   

The crucial difference in the exceptional case is that the right hand side (“RHS”) was set 
equal to zero by rearranging the original equation, prior to squaring.  Notably  02 = 0 , and  
+0 = −0 , so  ±0  can just be written as “0”.  This highlights an important benefit of 
rearranging an equation so that one side is equal to zero.   
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3.  Solving a quadratic  equation 

a) General case, with integer roots  

Solve  x2 − 5x = −6 . 

The most efficient solution process is as follows:   

x2 − 5x + 6 = 0 

(x − 2)(x − 3) = 0 

x = +2, x = +3  

As the original equation was quadratic, we should not be surprised to find two valid 
solutions.   

What happens if we decide to square both sides of the original equation first? 

(x2 − 5x)2 = (−6)2 

x4 − 10x3 + 25x2 = 36 

x4 − 10x3 + 25x2 − 36 = 0 

(Implicit constraints still exist, but can’t be stated just by inspecting the original equation.)   

Solving quartics is rather tiresome, and typically involves ‘guessing’ one of the roots as the 
first step.  Fortunately here we already know two of the roots, so both  (x − 2)  and  (x − 3)  
must be factors of the quartic (confirmed by observing that x=+2 and x=+3 both satisfy the 
equation on the last line above).  Applying polynomial long division twice yields:   

(x − 2)(x3 − 8x2 + 9x + 18) = 0 

(x − 2)(x − 3)(x2 − 5x − 6) = 0 

Note that the remaining quadratic corresponds to  x2 − 5x = +6  (compare this to the original 
equation!).  Factorising this yields:   

(x − 2)(x − 3)(x + 1)(x − 6) = 0 

Thus two spurious solutions have been generated:  x=−1 and x=+6.  Whereas the correct 
solutions are specified by  +2½ ± ½ ,  the spurious solutions are given by +2½ ± 3½ .   

b) Perfect square 

Solve  x2 + 6x = −9 . 

The most efficient solution process is as follows:   

x2 + 6x + 9 = 0 

(x + 3)(x + 3) = 0 

(x + 3)2 = 0 

x = −3 

What happens if we decide to square both sides of the original equation first? 

(x2 + 6x)2 = (−9)2 

x4 + 12x3 + 36x2 = 81 

x4 + 12x3 + 36x2 − 81 = 0 

Proceeding as above:   

(x + 3)(x3 + 9x2 + 9x − 27) = 0 

(x + 3)(x + 3)(x2 + 6x − 9) = 0 

Note that the remaining quadratic corresponds to  x2 + 6x = +9  (compare this to the original 
equation!).  Using the quadratic formula to factorise further: 

(x + 3)(x + 3)(x + 3 + 3 2)(x + 3 − 3 2) = 0 

Thus, two spurious solutions have been generated.  Interestingly, they are each offset by  

±3 2  from the genuine solution.   
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c) Degenerate case 

Solve  x2 + 2x = 3 . 

The most efficient solution process is as follows:   

x2 + 2x − 3 = 0 

(x + 3)(x − 1) = 0 

x = −3, x = +1  

As the original equation was quadratic, we should not be surprised to find two valid 
solutions.   

What happens if we decide to square both sides first? 

(x2 + 2x)2 = (3)2 

x4 + 4x3 + 4x2 = 9 

x4 + 4x3 + 4x2 − 9 = 0 

Proceeding as before to factorise the quartic yields:   

(x + 3)(x3 + x2 + x − 3) = 0 

(x + 3)(x − 1)(x2 + 2x + 3) = 0 

Note the similarity of the remaining quadratic to the original quadratic in the first line of the 
recommended solution.  Considering the discriminant of the so-called ‘quadratic formula’, 
whereas the original quadratic could be factorised, it is apparent that the quadratic remaining 
now cannot be factorised.   

So, by good fortune no spurious solutions have been generated.  This was because the quartic 
arising by inverting the sign on the RHS of the original equation, yielding x2 + 2x = −3 , has 
no real solution.  This reflects the capricious nature of solutions generated after squaring 
both sides of an equation — we don’t always have to remove spurious solutions.   

4.  Motivation — pract ical  examples  

The preceding examples illustrate the generation of spurious results upon squaring 
equations, but in those equations the motivation to square the equation was not high.  In the 
following examples the motivation to square the original equation is stronger, even though it 
is likely to lead to erroneous results.   

a) Semicircle 

Describe a sketch of  y = + 42 − x2 , and state whether y is a function of x. 

The above equation describes the upper half of a circle, i.e. a semicircle.  It is a ‘function’, 
because each value of x corresponds to one unique value of y.   

However, it would be tempting for some people to square both sides to obtain 

x2 + y2 = 42 ,  

which is the more familiar form of equation for a circle of radius 4, centred on the origin.  
Recognising this as the formula for a circle is likely to result in an incorrect sketch.  
Furthermore, the modified equation (for a circle) doesn’t describe a function, as it 
corresponds to  

y = ± 42 − x2 .   

To retain the original sense after squaring, the implicit constraint should be appended:   

x2 + y2 = 42 ,  subject to the condition that  y ≥ 0 

Unlike the previous examples which related to discrete numbers, here an entire range of 
results is involved.  In the previous examples it would be possible to validate each candidate 
solution in turn by substitution into the respective original equation;  that option is not 
readily apparent here — although ‘test points’ could still be checked for consistency.   
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b) Trigonometric identities, Part I  

Solve  5 sin(θ) = 52 – 52 cos2(θ)  for θ. 

First it is sensible to factorise and simplify:   

5 sin(θ) = 52 [1 – cos2(θ)] 

5 sin(θ) = 5 1 – cos2(θ) 

sin(θ) = 1 – cos2(θ) .   

Let’s review the feasible values of  sin(θ), cos(θ) and θ .  Under the square root we require a 
non-negative argument.   cos2(θ)  takes values from 0 to 1, and for all of these values the 
square root is defined, so this does not impose any limitation upon θ.  Overall the RHS can 
only be positive or zero, so  sin(θ)  cannot be negative, and thus θ must be in first or second 
quadrant.   

There is a trigonometric identify that is valid for any angle:   

sin2(α) + cos2(α) = 1  □ 

which is equivalent to  

sin(α) = ± 1 – cos2(α) .    ◊ 

The original expression is equivalent to the identity (which is valid for every value of θ), 
except that it imposes the additional constraint mentioned above.  Therefore the correct 
solution is:  0 ≤ θ + 2nπ ≤ π , in which n is any integer (positive, negative or zero).   

If we had simply squared the original expression, we should have then also ensured the 
constraint remained in place, as in  

sin(θ) = 1 – cos2(θ)  

sin2(θ) = 1 – cos2(θ) , subject to the condition that  sin(θ) ≥ 0 .   

c) Trigonometric identities, Part II  

Solve  1 – cos2(θ) / cos(θ) = –1  for θ. 

Analysis of the signs involved reveals that on the left side the numerator is positive, so the 
denominator must be negative in order to match the RHS.  Thus, the implicit constraint is  

cos(θ) < 0 .   

This means that the solutions can only be in the second and third quadrants (Q2 and Q3).   

Solution method 1 (without squaring, in two steps) 
Using the positively signed equality indicated in section 4.b) (equation marked ‘◊’),  

+ 1 – cos2(θ) = +sin(θ) ,  with θ in Q1 or Q2,   

and the original equation to be solved,  

1 – cos2(θ) / cos(θ) = –1 ,  with θ in Q2 or Q3,   

we obtain 

sin(θ) / cos(θ) = –1 ,  with θ in Q2 only.   

Hence 

tan(θ) = –1 ,  with θ in Q2 only.   

Thus  θ = 135° = 3π/4  is a valid solution, and therefore all values  θ = 3π/4 + 2nπ  satisfy the 
original equation, where n is any integer (positive, negative or zero).  However, this is not the 
complete solution!   

Consider a simple rearrangement of the original equation:   

– 1 – cos2(θ) / cos(θ) = +1 

Using the negatively signed equality indicated in section 4.b) (equation marked ‘◊’),  

– 1 – cos2(θ) = +sin(θ) ,  with θ in Q3 or Q4,   
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and 

– 1 – cos2(θ) / cos(θ) = +1 ,  with θ in Q2 or Q3,   

we obtain 

+sin(θ) / cos(θ) = +1 ,  with θ in Q3 only.   

Hence 

tan(θ) = +1 ,  with θ in Q3 only.   

Thus  θ = 225° = 5π/4  is a valid solution, and therefore all values  θ = 5π/4 + 2nπ  satisfy the 
original equation, where n is any integer (positive, negative or zero).   

Consequently the complete final solution is  θ = (1 ± ¼)π + 2nπ = (2n + 1 ± ¼)π .   

Solution method 2 (without squaring, in one step) 
The equation marked ‘◊’ in section 4.b) can be rearranged slightly,  

1 – cos2(α) = ±sin(α) .   

So the equation to be solved here can now be written 

[±sin(θ)] / cos(θ) = –1 ,  with θ in Q2 or Q3   

sin(θ) / cos(θ) = ±1 ,  with θ in Q2 or Q3.   

Hence 

tan(θ) = ±1 ,  with θ in Q2 or Q3.   

Thus  θ = 135° = 3π/4  and  θ = 225° = 5π/4  are immediately found as valid solutions.  
Therefore the complete final solution is  θ = (1 ± ¼)π + 2nπ = (2n + 1 ± ¼)π ,  as found 
before.   

Solution method 3 (squaring both sides) 
Square both sides of the original equation to be solved, while still keeping track of the 
original (implicit) constraint:   

[1 – cos2(θ)] / cos2(θ) = 1 ,  with θ in Q2 or Q3.   

Therefore, using the identity (the equation marked ‘□’ above), rearranged to 

1 – cos2(θ) = sin2(θ) ,  with θ in Q1, Q2, Q3 or Q4,  

yields  

sin2(θ) / cos2(θ) = 1 ,  with θ in Q2 or Q3.   

Hence 

[sin(θ) / cos(θ)]2 = 1 ,  with θ in Q2 or Q3,   

[tan(θ)]2 = tan2(θ) = 1 ,  with θ in Q2 or Q3.   

Caution is used in then taking the square root of both sides 

tan(θ) = ±1 ,  with θ in Q2 or Q3.   

If not for the constraint implied by the original equation (noted explicitly in the above 
working),  θ = π/4, 3π/4, 5π/4, 7π/4  would all be valid solutions.  However, substitution 
confirms that  θ = π/4  and  θ = 7π/4  (and any equivalent angles differing by 2nπ) are 
erroneous solutions that do not satisfy the original equation!  By applying the implicit 
constraint, from those four candidate angles we retain only  θ = 3π/4  and  θ = 5π/4  as valid 
solutions.   

Now that we have established the two valid solutions in the domain  0 ≤ x ≤ 2π , we can 
generalise.  The final complete solution is  θ = 3π/4 + 2nπ  and  θ = 5π/4 + 2nπ ,  where n is 
any integer (positive, negative or zero).  This can equivalently be written  θ = (1 ± ¼)π + 2nπ 
= (2n + 1 ± ¼)π .   
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