Division One Academic and Language Services

Trigonometric Functions of Angles in Each Quadrant

1. First quadrant

Note: angles are considered to be *positive* when measured <u>anticlockwise</u>, and *negative* when measured <u>clockwise</u>.

Functions of reference angle *A*:

$ \sin(\theta) \\ = \sin(A) = v/r $	$\begin{vmatrix} \cos(\theta) \\ = \cos(A) = h/r \end{vmatrix}$	$ \tan(\theta) \\ = \tan(A) = \upsilon/h $
$cosec(\theta)$ = $cosec(A) = 1/sin(A) = r/v$	$sec(\theta) = sec(A) = 1/cos(A) = r/h$	$\cot(\theta) = \cot(A) = 1/\tan(A) = h/v$

Observe that <u>all</u> trigonometric functions of θ are positive in quadrant I.

A mnemonic for this is to associate "a" with quadrant I.

Functions of complementary angle *B*:

$\sin(\theta)$	$\cos(\theta)$	$tan(\theta)$
$= \sin(90^{\circ} - B) = \cos(B) = v/r$	$= \cos(90^{\circ} - B) = \sin(B) = h/r$	$= \tan(90^{\circ} - B) = \cot(B) = v/h$
$=\sin(A)$	$=\cos(A)$	= tan(A)
$\csc(\theta)$	$sec(\theta)$	$\cot(\theta)$
$= \csc(90^{\circ} - B) = \sec(B) = r/v$	$= \sec(90^{\circ} - B) = \csc(B) = r/h$	$= \cot(90^{\circ} - B) = \tan(B) = h/v$
$= \operatorname{cosec}(A)$	$= \sec(A)$	$= \cot(A)$

Note: $A + B = 90^{\circ}$ by definition of complementary angles.

Division One Academic and Language Services

2. Second quadrant

Functions of reference angle *A*:

$ sin(\theta) = sin(180^{\circ} - A) = sin(A) = v/r $	$ cos(\theta) = cos(180^{\circ}-A) = -cos(A) = -h/r $	$tan(\theta)$ = tan(180°-A) = -tan(A) = -v/h
$cosec(\theta)$ = $cosec(180^{\circ}-A)$ = $1/sin(180^{\circ}-A)$ = $cosec(A) = 1/sin(A) = r/v$	$\sec(\theta)$ = $\sec(180^{\circ}-A)$ = $1/\cos(180^{\circ}-A)$ = $-\sec(A) = -1/\cos(A) = -r/h$	$\cot(\theta) = \cot(180^{\circ} - A) = 1/\tan(180^{\circ} - A) = -\cot(A) = -1/\tan(A) = -h/v$

Observe that only the <u>sine</u> and cosecant of θ are positive in quadrant II.

A mnemonic for this is to associate "s" with quadrant II.

Knowing that $sin(\theta)$ is positive automatically tells us that $cosec(\theta)$ must likewise be positive, as $cosec(\theta) = 1/sin(\theta)$.

Functions of complementary angle *B*:

r and r and r and r and r		
$\sin(\theta)$	$\cos(\theta)$	$tan(\theta)$
$= \sin(90^{\circ} + B)$	$= \cos(90^{\circ} + B)$	$= \tan(90^{\circ} + B)$
$=\cos(B)=v/r$	$=-\sin(B)=-h/r$	$=-\cot(B)=-v/h$
$= \sin(180^{\circ} - A)$	$=\cos(180^{\circ}-A)$	$= \tan(180^{\circ} - A)$
$\csc(\theta)$	$sec(\theta)$	$\cot(\theta)$
$= \csc(90^{\circ} + B)$	$= \sec(90^{\circ} + B)$	$= \cot(90^{\circ} + B)$
$= \sec(B) = r/v$	$=-\csc(B)=-r/h$	$=-\tan(B)=-h/v$
$= \operatorname{cosec}(180^{\circ} - A)$	$= \sec(180^{\circ} - A)$	$= \cot(180^{\circ} - A)$

Note: $A + B = 90^{\circ}$, by definition of complementary angles.

#1

Division One Academic and Language Services

3. Third quadrant

Functions of reference angle *A*:

$\sin(\theta)$	$\cos(\theta)$	$tan(\theta)$
$= \sin(180^{\circ} + A)$	$=\cos(180^{\circ}+A)$	$= \tan(180^{\circ} + A)$
$=-\sin(A)=-v/r$	$=-\cos(A)=-h/r$	$= \tan(A) = v/h$
$\csc(\theta)$	$sec(\theta)$	$\cot(\theta)$
$= \csc(180^{\circ} + A)$	$= \sec(180^{\circ} + A)$	$= \cot(180^{\circ} + A)$
$= 1/\sin(180^{\circ} - A)$	$= 1/\cos(180^{\circ} - A)$	$= 1/\tan(180^{\circ} - A)$
$= -\operatorname{cosec}(A) = -1/\sin(A) = -r/v$	$= -\sec(A) = -1/\cos(A) = -r/h$	$= \cot(A) = 1/\tan(A) = h/v$

Observe that only the <u>tangent</u> and cotangent of θ are positive in quadrant III. A mnemonic for this is to associate "t" with quadrant III.

Knowing that $tan(\theta)$ is positive automatically tells us that $cotan(\theta)$ must likewise be positive, as $cotan(\theta) = 1/tan(\theta)$.

Functions of complementary angle *B*:

$\sin(\theta)$	$\cos(\theta)$	$tan(\theta)$
$= \sin(270^{\circ} - B)$	$=\cos(270^{\circ}-B)$	$= \tan(270^{\circ} - B)$
$=-\cos(B)=-v/r$	$=-\sin(B)=-h/r$	$=\cot(B)=v/h$
$= \sin(180^{\circ} - A)$	$= \cos(180^{\circ} - A)$	$= \tan(180^{\circ} - A)$
$\csc(\theta)$	$sec(\theta)$	$\cot(\theta)$
=cosec(270°- B)	$= \sec(270^{\circ} - B)$	$= \cot(270^{\circ} - B)$
$=-\sec(B)=-r/v$	$=-\csc(B)=-r/h$	$= \tan(B) = h/v$
$= \csc(180^{\circ} - A)$	$= \sec(180^{\circ} - A)$	$= \cot(180^{\circ} - A)$

Note: $A + B = 90^{\circ}$, by definition of complementary angles.

#1

Division One Academic and Language Services

4. Fourth quadrant

Functions of reference angle *A*:

$\sin(\theta)$	$\cos(\theta)$	$tan(\theta)$
$= \sin(360^{\circ} - A)$	$=\cos(360^{\circ}-A)$	$= \tan(360^{\circ} - A)$
$=-\sin(A)=-v/r$	$=\cos(A)=h/r$	$= -\tan(A) = -v/h$
$\csc(\theta)$	$sec(\theta)$	$\cot(\theta)$
$= \csc(360^{\circ} - A)$	$= \sec(360^{\circ} - A)$	$= \cot(360^{\circ} - A)$
$= 1/\sin(360^{\circ} - A)$	$= 1/\cos(360^{\circ} - A)$	$= 1/\tan(360^{\circ} - A)$
$= -\operatorname{cosec}(A) = -1/\sin(A) = -r/v$	$= \sec(A) = 1/\cos(A) = r/h$	$= -\cot(A) = -1/\tan(A) = -h/v$

Observe that only the <u>cosine</u> and secant of θ are positive in quadrant IV. A mnemonic for this is to associate "c" with quadrant IV.

Knowing that $cos(\theta)$ is positive automatically tells us that $sec(\theta)$ must likewise be positive, as $sec(\theta) = 1/cos(\theta)$.

Functions of complementary angle *B*:

1	1		
$\sin(\theta)$	$\cos(\theta)$	$tan(\theta)$	
$= \sin(270^{\circ} + B)$	$=\cos(270^{\circ}+B)$	$= \tan(270^{\circ} + B)$	
$=-\cos(B)=-v/r$	$=\sin(B)=h/r$	$=-\cot(B)=-v/h$	
$= \sin(360^{\circ} - A)$	$=\cos(360^{\circ}-A)$	$= \tan(360^{\circ} - A)$	
$\csc(\theta)$	$sec(\theta)$	$\cot(\theta)$	
$= \csc(270^{\circ} + B)$	$= \sec(270^{\circ} + B)$	$= \cot(270^{\circ} + B)$	
$=-\sec(B)=-r/v$	$= \csc(B) = r/h$	$=-\tan(B)=-h/v$	
$= \operatorname{cosec}(360^{\circ} - A)$	$= \sec(360^{\circ} - A)$	$= \cot(360^{\circ} - A)$	

Note: $A + B = 90^{\circ}$, by definition of complementary angles.

This document was originally produced on 26 February 2017. This document was updated on 24 April 2025 and 10 June 2025.